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Abstract 

The Ozawa, Kissinger and Boswell isoconversion methods for obtaining activation energies, 
E~, from experiments performed at constant heating rate belong to one group of methods. It is 
shown that from these three methods the Kissinger method is generally the most accurate. Based 
on the analysis of the approximation errors made in this group of methods, a new isoconversion 
method is obtained, which takes the form: 

/3 Ea 
In t .~=  - A +constant  

T s kn T s 

where A = 1.0070-1.2 10 5 Ea (E a in kJ/mol),/3 is the heating rate and T s is the temperature at 
a fixed amount transformed. Hence, similar to Ozawa, Boswell and Kissinger's methods it is 
based on obtaining the slope of a logarithmic function containing the heating rate vs. l /T. The 
new method is shown to be significantly more accurate than the others. 

Keywords: Activation energy; Isoconversion method; Kissinger method; Non-isothermal analy- 
sis; Ozawa method. 

1. Introduct ion 

Thermal ly  ac t iva ted  t r ans fo rma t ion  processes  in the solid state can be inves t iga ted  
by i so thermal  exper iments  or  non- i so the rma l  exper iments  at  cons tan t  heat ing rate. 
The  la t ter  is the case with, for instance,  differential  scanning  ca lo r imet ry  (DSC) and 
non- i so the rma l  d i l a tomet ry .  F o r  non- i so the rma l  analysis  at cons tan t  hea t ing  rate 
a mean  ac t iva t ion  energy, E a, can be der ived using (amongs t  o ther  methods)  a Kissin-  
ge t - type  i soconvers ion  m e t h o d  (see for ins tance Ref. [1]). However ,  these me thods  are 
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subject to approximations which can introduce significant inaccuracies in the determi- 
nation of E,. 

In this work the accuracy of the so-called Kissinger and Ozawa [2] methods are 
investigated. It will be shown that the approximations used in the derivation of these 
methods introduce significant inaccuracies. A new method for the derivation of 
activation energies is presented. It is shown that this method is an order of magnitude 
more accurate than the Kissinger and Ozawa methods. 

2. Classical isoconversion methods for determination of E a 

Generally the transformation rate during a reaction is assumed to be the product of 
two functions, one depending solely on the temperature, T, and the other depending 
solely on the fraction transformed: 

dot 
dt k (T ) f (a )  (1) 

where ~ is the fraction transformed: 

o~ = x (t)/Xeq (T) (2) 

x(t) is the amount transformed, Xeq is the maximum amount that can transform before 
(metastable) equilibrium is reached, i.e. x~q = x(t-~ oo, T). For k(T)  usually an Ar- 
rhenius expression is assumed to be valid, i.e.: 

k(T) = k o exp [ - Ea/k B T] (3) 

where k o is a constant, E a is the activation energy of the process, which is assumed to be 
constant, and k B is Boltzmann's constant. From Eqs. (1)-(3) follows immediately that 
for transformation studies performed at constant temperature, T~, Ea can be obtained 
from the well known relation (see for instance ref. [1]): 

E~ 
In t s = k ~ / +  C1 (4) 

where tf  is the time needed to reach a certain fraction transformed, and C~ is a constant 
which depends on the reaction stage and on the kinetic model. Thus E a can be obtained 
from two or more experiments at different T. 

For  transformation studies performed at constant heating rate, methods for 
determining E, can be derived as follows. Eq. (1) is integrated by separation of varia- 
bles: 

fo ~ do~ k o e f:'exP(--f )dr=k°e° (5) flka Jy, y2 

where y = EJk  a T, Yl = EJka TI, T~ is the temperature at a fixed state of transform- 
ation, and fl is the heating rate. Various ways of approximating p(y) have been applied 
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in the literature (see refs. [1,2,3,4,5])• Integrating in parts and truncating the series by 
assuming yi>> 1 results in the following approximation for p (see ref. [1]): 

e x p ( - y )  
P(Y) ~- PK(Y) = y2 (6) 

The assumption yf  >> 1 is reasonable, since for the vast majority of solid state reactions 
(and many other reactions) 15 < Yl < 60. By taking the logarithm of Eq. (5) and using 
Eq. (6) one obtains: 

('~ do~ koE . 1_ 
In / - - = l n - - + l n f l  j o f ( ~ )  kn ---Ye~ } (7) 

At constant fraction transformed, ~, this leads to: 

/ ~  E. 
In T} k , ~  + C2 IS) 

C 2 and subsequent Ca, C4, Cs are constants which depend on the reaction stage and on 
the kinetic model. According to Eq. (8) plots of In (T~/fl) versus 1/Tj- should result in 
straight lines, the slope of the straight lines equalling E,/kB. This method is usually 
referred to as the Kissinger method. Adoption of a specific reaction model, as various 
authors have done in the past [6,7,8], is not required to derive Eq. (8). 

An alternative method is the Ozawa method (see e.g. ref. I-2]). This method is 
obtained by approximating p (y) as follows: 

log p (y) ~ log Po(Y) = - 2.315 + 0.4567y (9) 

This approximation is known as Doyle's approximation. By taking the logarithm of 
Eq. (5) and using Eq. (9) this results in: 

l n f l = - 1 0 5 1 8  E. + C  3 (10) 
• ksT¢ 

A comparison of the Ozawa and Kissinger methods shows that they both comply to 
the following equation: 

In fl - A  E~ k.Ts +c4 (11) 

where s is a constant, and A is a constant which depends on the choice ofs. In the case of 
Kissinger's method s = 2 and A = 1, whilst for the Ozawa method s = 0 and A = 1.0518. 
Also Boswell [3] proposed a (less known) method which can be represented by Eq. (11 ), 
using s = 1 and A = 1. Also for Eq. (11) a corresponding approximation of p(y) should 
exist. Insertion in Eq. (5) will verify that this approximation has the general form: 

exp ( -  Ay + B) 
P(Y) -~ Ps(Y) - (12) yS 

where B is a constant depending on s. Just as Eq. (11) is a generalised form incorporat- 
ing Eqs. (8) and (10), one can consider Eq. (12) to be a generalised form incorporating 
Eqs. (6) and (9). 
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At this point it should be noted that apart from the isoconversion methods of 
Kissinger, Ozawa and Boswell other methods for the derivation of activation energies 
exist. The method proposed first by Friedman [9] does not use any approximations 
and is therefore mathematically exact (see also ref. [10]). Apart from requiring 
temperatures at a fixed ct (as the above methods) this method also requires d ~ / d T  at 
fixed cc If dct/d T at fixed ~ can be measured accurately Friedman's method is advisable. 
However, the latter can be difficult to obtain for several experimental methods. (For 
DSC experiments it is sensitive to the baseline stability.) In this paper only methods of 
the type presented in Eq. (11) are considered. 

To assess the accuracy of the different approximations for p(y) first p(y) was 
calculated by converting the integral into a summation (with 2000 steps) and subse- 
quently the values of A and B for a best fit ofps to p (y) for 15 < y _< 60 were calculated 
by linear regression of In (pyS) vs. y (i.e. different values of A and B are obtained for 
different values of s). The values obtained for A are presented in Fig. 1. In the same 
figure also a measure for the quality of the fit is presented. This quantity, Q, is defined as 
the integral of (ps (y ) /p(y )  - 1) 2 for 15 < y < 60. The fraction p J p  is presented in Fig. 2. 
Figs. 1 and 2 show that the best approximation of p(y) using Eq. (12) is obtained for 
s equalling about 1.8 to 1.9. For  s = 2 one obtains A = 0.998. Hence, in the range of 
y values concerned, the Kissinger method will on average underestimate E, by 0.2% 
(see also ref. [113). The approximations which lead to Boswell's method (s = 1) and 
especially the one which leads to Ozawa's method (s = 0) are clearly much less accurate, 
and to obtain an accurate activation energy it is imperative that tables of correction 
factors are used. (For the case of Ozawa's method correction factors have been given in 
ref. [-12].) For  s around 1.9, the values for A obtained from the fitting procedure are 
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Fig. 1. Correction factor A (from Eq. (12)) needed to obtain the best approximation of the function p(y) for 
15 _< y _< 60 and the resulting quality parameter, Q, for a best fit of Ps(Y) to p(y), both as a function of s. 
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Fig. 2. The ratio of p(y) (from Eq. (5)) and its approximation Ps(Y) (Eq. (12)) as a function of y for several 
values of s. The best approximation is obtained when this ratio is approximately constant, i.e. for s ~ 1.9. 

close to unity and hence it follows that Eq. (11) with s equalling about 1.8 to 2 and A = 1 
is a reasonably accurate method for obtaining activation energies. For s = 1.94 the 
fitting procedure results in A = 1 and hence these parameters should give the best result 
with Eq. (11) and A --- 1. Within the interval of y values studied the accuracy of this 
method is better than Kissinger's method. However, an even more accurate method can 
be obtained. 

3. A new isoconversion method for determining E= 

To obtain this new method the following general expression forf(e) is used (see e.g. 
refs. [1,13]): 

f ( a ) = ( 1  - u ) v  In (13) 

where p and q are constants. It is noted that Eq. (13) can take account of both 
homogeneous n-th order reaction kinetics (q = 0, reaction order n = p) and Johnson 
M e h l - A v r a m i - K o l m o g o r o v  (JMAK) reaction kinetics (p = 1 and Avrami exponent 
m = [1 - q ] -  t). In the following it is assumed that incubation times are negligibly 
small. Using Eqs. (1)-(3) and (13), transformation curves (i.e. c~ as a function of T) were 
generated using a step by step method (i.e. considering small intervals AT), for 
1 < p < 3, 1 _< m < 3, 50 < E a < 300 kJ/mol, 1 K/min < fl < 100 K/min, whilst k o was 
chosen such that 250 < T I < 1000 K. The vast majority of solid state reactions studied 
in the literature fall within these parameters.  From the curves activation energies were 
calculated for 0.02 < ct < 0.9. 



102 M.J. Starink/Thermochimica Acta 288 (1996) 97-104 

As was explained above in principle various isoconversion methods for the calcula- 
tion of E, can be obtained using Eq. (11) with s around 1.8 to 2 and A equalling about 
unity. It is considered that allowing A to vary with heating rate can further improve the 
accuracy of the method. Hence, several values ofs in the range 1.7 to 2 were tried and an 
optimised A was estimated via a linear regression analysis of the obtained slopes of 
In (T~/fl) versus 1/k B Ty. It was found that within the range of parameters studied the 
following expression yielded a very accurate reproduction of the activation energy of the 
reaction, with a minimum variation of measured activation energy with heating rate and e: 

T~ - A E~ In .8 kn TI + C5 (14) 

with 

A = 1.0070-1.2 10-5 Ea (E a in kJ/mol), (15) 

Hence, to obtain the activation energy with this new method the slope of a plot of 
In (T)8/fl) versus 1/kBTy should be calculated, whilst A can be evaluated using this 
slope as a first approximation for Ea. Note that A obtained from Eq. (15) for the range of 
E, values studied is close to the one obtained from Fig. l of 1.004. 

To compare the accuracy of the different isoconversion methods, curves generated 
with Eq. (13) are used. The reaction parameters (see Table 1) are chosen to model 
often studied, well known reactions as well as hypothetical reactions which probe 
the limits of the range of parameters used. Examples from the first group are 
reaction B which models GP-zone formation in a hypothetical Al-based alloy 
and reaction E which models Y' formation in a Fe-1 mass%N alloy [14]. In Table 1 the 
average activation energies as obtained for 7 = 0.56 and fl between 1 and 100 K/min are 
presented. Inspection of Table i reveals that Kissinger's method is about one order of 
magnitude more accurate than Ozawa's method. Other authors came to similar 
conclusions [4,15]. It should however be noted that activation energies obtained with 
Ozawa's method can be corrected using a table of correction factors as a function of 
y (see Flynn [12]). Application of these tables to correct values in Table 1 (using y at Tp) 

Table 1 
Ea calculated by different methods normalised by the value of E a that was used as input. Transformation 
curves were generated using Eq. (13). Tp is the temperature at max imum reaction rate for fl = 15 K/rain. 

Reaction Parameters E a (calculated)/E~ 

m p Tp E a in Ozawa Kissinger Eqs. ((14), (15)) 
in K in kJ/mol Method Method 

Reaction A 1.4 1.4 610 48 1.134 0.984 0.999 
Reaction B 1.4 1.4 350 58 1.042 0.997 1.000 
Reaction C 3 3 700 96 1.061 0.995 1.000 
Reaction D 1.4 1.4 1000 96 1.108 0.989 1.001 
Reaction E 3 1 540 193 0.997 1.000 1.000 
Reaction F 2 2 700 289 0.988 0.999 1.000 
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reproduces the correct activation energy within about 0.2%. As expected from the 
calculated A value of 0.998 for s = 2, Kissinger's method still underestimates E a by a few 
tenths of a percent. The deviations are especially large for smaller y values. The nev+ 
method (Eqs. (14) and (15)) is about 5 times more accurate than Kissinger's method, 
bringing the average accuracy of the determination of E a to about 0.05%. The new 
method does not suffer from declining accuracy at decreasing y values. 

For all methods considered the obtained values for E, vary (slightly) with fl, i.e. plots 
obtained on the basis of Eqs. (8), (10) and (14) are not perfectly straight. Further, for all 
methods considered the obtained values for E, vary (slightly) with ~. These variations 
result from the variations of the accuracy of the various approximations of p(y) with 
y (see Fig. 2). However, the variations in E,  are smallest for the new method (Eqs. (14) 
and (15)) and they amount to about 0.1% in the range of e and/7 considered. The 
variations of E, with ~ and/~ for the next best method (the Kissinger method) are about 
factor 5 larger. 

Note that the new method is based on an approximation of p(y) which is more 
accurate than the other methods considered (see Fig. 2). Hence, although Eq. (13) was 
used to generate some practical examples, the conclusions concerning the accuracy of 
the methods considered should hold irrespective of the transformation modelf(~) used. 
Also, even though the accuracy will degrade somewhat when y is outside the range 
studied (15 to 60), still the new method should be the most accurate of the methods 
considered, 

It might be worthwhile to stress again that this new method is designed to be used at 
constant values of ct. Even though the stage at maximum rate of transformation is in 
good approximation at constant ~ (see refs. [1,16]) using this stage will inevitably 
introduce some inaccuracies which depend on the operating reaction model (see e.g. 
ref. [17]). 

4. Conclusions 

A new isoconversion method for obtaining activation energies from experiments 
performed at constant heating rate is presented. Similar to Ozawa and Kissinger's 
methods it is based on obtaining the slope of a logarithmic function containing the 
heating rate vs. lIT. The new method is more accurate than the other two. 
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